Tesla coil theory and applications

Harri Suomalainen
haba@snakemail.hut.fi

September 26, 1993, Revised November 24, 1993
Contents

1 Introduction
 1.1 Few notes on this document
 1.2 What is a tesla coil?

2 General theory

3 A sample schematics

4 Some tesla mathematics
 4.1 Output voltage
 4.2 Resonance frequency

5 Construction of the components
 5.1 The whole unit
 5.2 Tesla coil
 5.2.1 The Primary winding
 5.2.2 The secondary coil winding
 5.2.3 Secondary coil dimensions
 5.3 Primary capacitor
 5.3.1 Plate capacitor
 5.3.2 PCBs
 5.3.3 Layden jar
 5.4 Output terminal
 5.4.1 Capacitive hat
 5.4.2 Other output terminals
 5.5 Spark gap
 5.6 High voltage supply
 5.6.1 High voltage transformer
 5.6.2 Mechanical interrupts
 5.6.3 Electrochemical interrupts
 5.7 Resonance indicators
 5.7.1 Current measuring
LIST OF FIGURES

5.7.2 Monitoring the corona ... 20
5.7.3 Monitoring the magnetic field 20
5.8 Materials .. 20

6 Construction, the practical aspects 21

7 Sample coils from bibliography 21

8 Modern tesla coils .. 21
 8.1 General discussion of modern tesla coils 21
 8.2 Push-pull configuration ... 22
 8.3 Single ended driving ... 24
 8.4 Practical examples of modern tesla coils 25

9 Modern vs original methods ... 25

10 Experiments with the tesla coil 26
 10.1 Precautions ... 26
 10.2 Suggested experiments ... 26

11 Suggested bibliography .. 27

A Physical data .. 28

List of Figures

1 Whole tesla coil unit ... 5
2 Tesla coil schematics ... 6
3 The tesla coil ... 10
4 Plate capacitor ... 12
5 Layden jar capacitor ... 13
6 Output terminal ... 14
7 Spark gap ... 15
8 Rotating spark gap .. 16
9 Interruptor ... 17
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mercury based interruptor</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Wehnelt interruptor</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>LED as a tune indicator</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>Push-pull driver with step-up transformer</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>Push-pull driver with direct electrical connection</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>Single ended solid state driver</td>
<td>24</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Few notes on this document

This document is a quick draft introduction on tesla coils. I'll be telling something about tesla coil theory as well as practical construction. Info on both modern coils as well as of the original spark gap driven coils.

I have not meant this as a make your own this one tesla coil project type document. This is mainly denoted to the actual info although you'll be able to construct something based on this. This is mainly a manual for an experimenter who wants to know what, where, when and why on tesla coils.

No pictures are really accurate or drawn in scale. They are just illustrations and user should note this while reading this document.

User should never try constructing any projects described in this document. They can be dangerous for health and even cause death! All information is provided as is. User of this document should be very careful and experienced in hi-voltage electronics to try anything out! If you do it the risk of any results is just yours. I take no responsibility of anything that might happen, let it be of a wrong information or anything else.

Copyright: this document is copyrighted by the author. All commercial use is forbidden. You may distribute this freely when no charge or only the charge of copying expenses is taken. In all other commercial cases you should discuss about the terms with the author.

This must be distributed as a whole package. No changes are allowed. For any changes discuss with the author for inclusion of new information for the next revision.1

1.2 What is a tesla coil?

Tesla coil is a resonant high voltage transformer named after the inventor Nikolai Tesla. Tesla coils can be used to produce extremely high voltages (say 100kV or 250kV). Tesla coils can produce continuous sparks exceeding the height of the coil. Sparks will be very loud. Large devices can be louder than rifle shot! User should note this and be not surprised with the first loud cracks.

Tesla coils can be used in experimenting with high energy electric and magnetic fields. Most bizarre effects will be noticed with tesla coils.

1Any additional info on subject is appreciated by the author
Figure 1: Whole tesla coil unit
2 General theory

Tesla coil is a high-frequency high-voltage resonant transformer. It differs from a conventional transformer in that the voltage and current relationships between primary and secondary are independent of turns ratio.

Usually tesla coil primary (see figure 2) has very few turns, say 6 or so. It is evident that it is capacitance dominant. Secondary of tesla coil is highly inductance dominant. Primary is tuned with the capacitor parallel with it. Secondary is tuned by self capacitance and inductance. Number of primary turns is used to tune the primary to the resonance frequency of the secondary.

Tesla coil should be driven in resonance. Force driving the secondary coil will produce hot spots and interwinding breakdown. The output of force-driven secondary is also lot lower than the output of properly driven (tuned) coil.

Tesla coil can be also driven at the resonance frequency. In this case primary does not need to be tuned. This is the case when coil is driven with an external oscillator or tuned interruptor.
3 A sample shematics

There is a sample shematics on the figure 2. R1-Ne1 is an power-on indicator. It could be replaced with an ordinary lamp if one wants to.

T1 is the step-up transformer. A 6kV/23mA transformer is used in [1]. A 10kV neon transformer is used in [2]. I’m about to use a 4kV/100VA and 8kV/200VA transformers in my projects very soon. One should select the transformer according to the needs again. Voltage rating of C1 should match the output voltage of T1.

L1 is there to reduce noise induced at the power line. You’d better off with a good noise filter instead.

T2 just steps the voltage up. T2 is the actual Tesla coil.

4 Some tesla mathematics

4.1 Output voltage

When coil is driven in resonance the output of tesla coil can be approximated by

\[V_{out} = \frac{C_1}{C_2} V_{in} \]

where

- \(C_1 \) = primary capacitance
- \(C_2 \) = secondary capacitance
- \(V_{in} \) = the input voltage.

This could be expressed also as a ratio of primary \(Q \) and secondary \(Q^3 \) or by means of SWR.\(^3\) Output voltage will be SWR times the input voltage where SWR is the ratio of transmission line impedance to the input impedance of coil.\(^4\)

4.2 Resonance frequency

Resonant frequency of the primary can be easily calculated with

\[f = \frac{1}{2\pi\sqrt{LC}} \]

where

\(^2\) I’d need more info on these methods! Tell me if you know!

\(^3\) As suggested to me by Bob Hale.

\(^4\) Maybe some books about transmission line theory would be helpful on this subject. The author would love any additional info these methods!
\[f = \text{the frequency in Hz} \]
\[L = \text{the inductance of secondary coil in H} \]
\[C = \text{the primary tank capacitance in F} \]

The secondary is the difficult part to approximate. I’ve found the following method an excellent approximation for coils with \(h/d \) in range of 1-3. The frequency is determined by the inductance of the secondary and by the interwinding capacitance of secondary as well as by the capacitance of the output terminal. Effect of the output terminal has been neglected here. The frequency is calculated from

\[f = \frac{c}{\lambda} \quad (3) \]

where

\(f = \text{the frequency in Hz} \)
\(c = \text{the speed of light} \) (300 000 000 m/s)
\(\lambda = \text{the wavelength in meters} \)

\(\lambda \) can be calculated from

\[\lambda = sl \quad (4) \]

where

\(s = \text{the shape factor} \)
\(l = \text{the length of wire} \)

\(\lambda \) and \(l \) are in the same units.

Shape factor is originally from a table. I just made a polynomial approximation to make calculations easier. See [5] for the original method. Shape factor can be calculated from

\[s = 3.485 \times \left(\frac{h}{d} \right)^{-0.384} \quad (5) \]

where

\(s = \text{the shape factor} \)
\(h = \text{the height of coil} \)
\(d = \text{the diameter of the coil} \).

I’ve found the approximation of frequency has been within 10% error marginal with the coils I’ve constructed. A large capacitive hat will make a difference and it should be avoided anyway.
You can also calculate the frequency of secondary by

\[
\frac{h}{\lambda} = 0.25 \times \sqrt{1 + 20 \times (N + d)^{2.5} \times \frac{d}{\lambda}}
\]

(6)

where

\(h = \) the height
\(\lambda = \) the wavelength
\(N = \) number of turns per unit length
\(d = \) diameter of the coil

According to Bob Hale this equation can be found in [3]. This method seems very accurate as well.

5 Construction of the components

5.1 The whole unit

A drawing of an operating unit is included. See the figure 1 for an example of constructing the whole unit.

5.2 Tesla coil

5.2.1 The Primary winding

The primary is wound at the bottom of the coil usually. I have found experimenting with the position of the primary may be worthwhile. In some of my experiments feeding at the middle of the secondary gave better results. Constructing a bottom-fed tesla coil might be easiest to do like shown in figure 1.

Primary is naturally a bit larger than the secondary. Usually primary and secondary have something like 1-5 cm space between them to prevent arcing from the secondary to the primary.5 See 5.2.2 on page 10.

The primary should be made of few turns (3-12) of heavy wire or even copper tube or any other highly conductive material. Primary should not be made of insulated wire. Tuning is made by tapping the primary on suitable points. Care should be taken that user cannot touch the primary by accident.

\[^5\text{This really does happen I've seen it!}\]
5.2.2 The secondary coil winding

The secondary is a large single layer coil. It should be constructed on some non-conducting material, such as PVC pipe. Winding must be neat and tight. Any overlapping will affect performance dramatically.

A multilayer coil is not possible. It would be too difficult to insulate the layers. Say you have some 200kV output. Then for a two-layer coil the potential between the layers would be 100kV. That would be arching on the air over a distance of approximately 20mm or so. To avoid the huge insulating problems you’d better make it one-layer type. As well you can do frequency approximation for a one-layer coil with the formulaes described in this document.

After secondary has been wound it should be insulated properly. One could use something like plastic spray, silicon, paraffin wax and many other good insulators for that. One should observe any appearing corona on the coil and insulate it more or the coil will be destroyed. Arcing between primary and secondary can be reduced by putting a plastic tube between the primary and secondary.

See figure 3 for a picture. Note that it has very large spacing drawn just for clarity, it should be tight!
5.2.3 Secondary coil dimensions

This is the hard part for the constructor. The coil should be made with 1/4 wavelength of wire. Secondary should have length/diameter of approximately 2...2.3.

5.3 Primary capacitor

High voltage capacitors are hard to find and very expensive. Therefore it might be good idea to make your own. There are lots of good ways to make capacitors. To make good capacitors one should know some theory behind the capacitors. Capacitance between two parallel plates can be calculated from

\[C = \frac{\epsilon S}{d} \]

where

- \(S \) = surface area of a plate
- \(\epsilon \) = dielectric constant
- \(d \) = distance between the plates.

So, to make capacitors large (in capacitance) one should keep the distance as small as possible. Usually this is limited by break-down voltage of the used material. A better insulator will allow shorter distance and therefore more capacitance and smaller size. Of course, one should have bigger plates for more capacitance as well. Dielectric constants can be seen in the tables, see the local library.

You can make easily adjustable capacitors by changing the distance between the plates and by changing the effective surface area. Changing distance is rather easy, attach one of the plates to a screw. Modern (small) adjustable capacitors have plates (say the plates are half sphere shaped) which can be rotated. On the one extreme the plates are not at all between the others. On the other extreme the half spheres are exactly between the others. Therefore rotating is used to adjust the capacitance.⁶

5.3.1 Plate capacitor

Figure 4 has a conventional plate capacitor.⁷ Aluminum foil could be in between of larger insulator plates. The insulators should be large enough to prevent

⁶Buy one and see, if you’re still wondering how to do it!

⁷Note that drawing is again made clear, not correct. There is extra spacing for clarity.
arching from one plate to the other. Of course other materials like copper plates can be used as always.\footnote{I leave the choice of the material for the experimenter.}

5.3.2 PCBs

Another way to make plate capacitor is to stack some PCBs and you'll have a plate capacitor described earlier.

Depending on what you want even a single doublesided PCB might be good.\footnote{This approach has been used every now and then for small capacitors.}

All you have to do is to solder a couple of wires and there you are.

One should also etch an adequate spacing between the copper foil to the edge of the PCB. If not, there will be arcing from one plate to the other.

5.3.3 Layden jar

Figure 5 has a Layden Jar. It is very easy to make like all capacitors.

Take an old glass jar and attach aluminum foil on the inside and on the outside. Nicolai Tesla himself used layden jars as capacitors.

According to [2] a layden jar with a diameter of 135mm and foil height of 100mm will have a capacitance of almost exactly 1nF. One should note that the jar has to have the cap on or breakdown may occur.
5.4 Output terminal

5.4.1 Capacitive hat

Output terminal is often called a capacitive hat as well. It should be a brass ball attached to a brass rod. It should not be too large or output will be reduced. Something like 3cm in diameter is said to work well.

In figure 6 we have a picture of an output terminal. There is a lid glued on top of the coil core (PVC pipe). This lid should be insulating material of course.

Drill a suitable hole on the lid and mount a brass rod on top of the lid. On the end of brass rod you should attach the brass ball. The wire from the upper end of the coil is attached to the brass rod. Drill a small hole at the side of the pipe. You have to get the wire inside somehow of course.

You better insulate the wire and the lower end of the brass rod. (Not drawn in the picture.)

Alternatively you can mount a banana plug at the lid and just install brass rod on it. This enables you to experiment easily with many different kind of terminals.

5.4.2 Other output terminals

You can try many different kinds of terminals. You can try just plain wire, a kneedle and so on. Probably the most spectacular terminal is a so called rotor which is also shown in figure 6. The electrons will be shot off from the ends of the rotor. Because of the finite mass of the electrons it will start rotating. Rotor should be carefully balanced to work. This is also called as an ion motor.
Figure 6: Output terminal
5.5 Spark gap

Spark gap should be constructed of two parallel plates with adjustable distance. One of them is usually solid and the other is attached at the end of a bolt which could be rotated to adjust the distance. It could be also made of just an adjustable gap made for example with two brass rods.

In figure 7 we have two parallel plates attached to screws. One screw is fixed and one can be turned by the plastic tube attached to it. As with all the high-voltage components one should take great care not to place any objects near the metal enclosure. Arching will occur if you do.

Some early high power radio transmitters used rotating spark gaps to reduce erosion. The principle is shown in figure 8. The motor rotates the rods attached to it and spark occurs only when two brass rods are closely enough. Sometimes a very large number of rods were used. Something like 50 or even 100 was not very uncommon. Aside from reducing the erosion this type of spark gaps used to have a better note on the receiver.
The axes of a motor
The spark

Rotator
Brass rod

Output wire
Brass rod
Insulator

Figure 8: Rotating spark gap
5.6 High voltage supply

5.6.1 High voltage transformer

By far the most versatile high-voltage supply is a single transformer connected to mains as shown in the sample schematics. This very simple to make and rather cheap if you run into some surplus neon transformers.

5.6.2 Mechanical interruptors

There are many ways to make mechanical make/break type supplies. These were used in the early days of Tesla coils. Figure 9 has a schematic for an interruptor based system. SW1 can be a mechanical switch or a relay. Most usually SW1 used to be a switch which could be rotated with a motor.¹⁰

Some early interruptors used a metal triangle attached to a motor. As the triangle rotated corners were dipped in the liquid mercury and contact was momentarily made. Reader is advised not to try this method because mercury is highly toxic! This type of setup can be seen in figure 10. The triangle is used as a one end of the “swich” and an electrode at the mercury is used as the other end of the “swich”.

5.6.3 Electrochemical interruptors

Some electrochemical interruptors have been used in the early days of Tesla coils as well. The best known is the Wehnelt interruptor. It is very easy to construct

¹⁰This type of induction coils are still used in the car ignition system
from two plastic containers. Needle valve is not essential for the operation. See figure 11 for an illustration of this type interruptor.

5.7 Resonance indicators

There are lots of nice methods to see when the coil is tuned. These include

- Series ammeter
- Other current indicators like LEDs
- Monitoring the output corona
- Monitoring the output magnetic field

All of these are commonly used and are rather easy to construct. Yet the are very valuable for the operator and tuning of the coil.

5.7.1 Current measuring

This principle included both using a ammeter and using a LED as a tuning indicator. A current indicator is just installed between the low voltage end of coil and ground. Using a LED as a tuning indicator is shown in figure 12.

A few words about figure 12 has to be said. Diodes D1-D3 are in series. The voltage across them is about 1.8-2.1V. Therefore the LED D5 is lit when the current is running from ground to the coil. When the current is opposite diode D4 conducts and current is running to the opposite direction.

It should be noted that whereas voltage is high the current running through tesla coils is low and therefore this kind of method can be used. I've tried it for a few times and it seems very reliable.
5 CONSTRUCTION OF THE COMPONENTS

Figure 11: Wehnelt interruptor

Output terminal

Tesla coil

D1, D2, D3, D4 = 1N4007
D5 = LED (1.5V type !!)

Figure 12: LED as a tune indicator
The current when operating the coil can be too large to see a very good difference in the led. One should run the coil with a lower power (lower input voltage or limited input current) to reduce the output. In that case the coil is dim enough and differences can be easily noted.

Of course, you can replace LED and diodes with a current meter. I've not tried this out yet and therefore I will comment it no more. It has been used in the early days of radio and still almost every radio amateur wants to measure output power every now and then.

5.7.2 Monitoring the corona

Monitoring the corona output is the best method for fine tuning the coil. One just has to observe the corona and tune the coil for best possible output. No extra hardware is needed either.

Other methods are very useful for coarse tuning the coil. Finding an optimum tap location can be sometimes difficult and when monitoring the current one can see if the change is going to the right direction. Naturally, once the tap is found corona can be observed for fine tuning.

5.7.3 Monitoring the magnetic field

I run the coil with low power because one should always run the coil with low power when coarse tuning it. A 1-2 turns loop was installed 10 cm below the tesla coil to pick up the magnetic field. A small resistor was added in parallel with the loop to load it slightly.

Then I monitored the output with an oscilloscope. I noticed that the coil acted as a good filter and almost only the resonance frequency component was noticed as a clean sine wave. When the driver section was not tuned very accurately the output was low. Then I monitored the output and tuned for a maximum amplitude.

This method may sound difficult. However, it is very easily constructed and it proved to be very reliable. It made the tuning process very easy! Of course, not everyone has a scope and they are forced to use other method. A current meter might be one good alternative.

5.8 Materials

I'm telling all the time you something like plastic, brass, steel, aluminum, glass and so on. I'm sure you can figure out the meaning of these. Select materials according to your need. You can use silver if you want and need the better conduction and can afford it. Usually brass will do and sometimes even steel
will do. The insulating materials can be selected according to your need as well. If you want small plate capacitors you need better insulator. Usually glass of PVC or teflon should do. The choice is yours. See A on page 28 for details on materials.

6 Construction, the practical aspects

As I said already, you should bear in mind that high voltage arcing can occur in the air. You’ll need usually something like at least 1-2cm space between different conducting materials. If you run your coil with a higher voltage, you’ll need bigger spacing naturally.

See the bibliography for better info on the construction of those coils.

7 Sample coils from bibliography

[1] used a coil made of #24 wire. Coil was 10” in height and 4” in diameter. It had 500ft of wire and approximately 450 turns. The primary was made of 6 turns of #12 wire wound as a loop with 8” in diameter. C1 was 5nF. Output with 6kV input was approximately 10” sparks. Operating frequency is not mentioned.

[2] used a coil made of 500 turns of 1.5 diam wire. It was close wound so that windings occupied about 750mm of a 900mm tube which had 70mm diameter. An 200mm diameter primary consisted of 12 turns of heavy wire of which normally about 6 turns were used. Primary capacitance was 2nF and the frequency was about 300kHz. The output was approximately the same as in the previous. Note that larger coil and higher voltage did not work any better because the shape was not good.

[2] used a spark gap made of only two brass rods. I’m still wondering if the plates are usually there just to reduce erosion...

8 Modern tesla coils

8.1 General discussion of modern tesla coils

Modern coils are usually driven by different kinds of oscillators. One could use a MOSFET, bipolar transistor or a tube to drive the primary. Usually the configuration is push-pull to get more output.

11This was the original coil made of Mr. Tesla. Note that this does not have the best possible shape!
Tubes are far most the best choice. They are not as sensitive to spikes as transistors are. Therefore they are harder to destroy and less precautions is required. There are also tubes for very high voltages (in the kilovolt range).

This kind of driver could be constructed in two ways: One way is to have a simple push-pull oscillator which drives the coil. The other way is to have a separate oscillator driving the power stage.

8.2 Push-pull configuration

The [4] had basically a method similar to that in figure 13. The main idea is this: One end of the primary of the push-pull transformer is at half the supply voltage. The other end is pulled to low and high alternatively at the resonance frequency. The transistors T1 and T2 are driven by some sort of oscillator (not shown in the figure). D1 and D2 are there to protect transistors from voltage spikes.

Another way would be driving it directly like shown in figure 14. This could be done, if you have very high supply voltages. In practice with high voltages you will have to use tubes instead of bipolar transistors.\footnote{Tubes are easily found for 4kV whereas even 2kV transistors are rare and expensive} The main idea is this: T1
and T2 are pulled alternatively low and high \textit{at the resonance frequency}. The driver is driven by an oscillator and diodes D1 and D2 are for protection like in the previous example.

Of course in either of these methods you could connect the output of the driver to the primary of tesla coil in case you want to drive the coil inductively. However, I prefer electrical connection.

Push-pull configuration can be driven by sine oscillator or by square wave. Square wave may be preferred because it will result in less heat in the driver transistors/MOSFETs/tubes when these are driven into complete conduction. Dispite of the disadvantages of driving with square wave it may be desirable or even essential to keep the power dissipation low.

The drawback of square is that it needs more power than the sine because only some of the power is fed at the resonance frequency. According to the fourier theory square wave can be expressed as a series of sines. For example, a square wave with a frequency of $1/(2\pi)$ and values of 0 and 2k (lo and hi) can be expressed as

$$f(x) = k + \frac{4k}{\pi}(\sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + ...)$$

(8)

Therefore it is evident that only part of the fed power is on the resonance frequency.

Figure 14: Push-pull driver with direct electrical connection
My first experiments were made with a single ended driver like shown in figure 15. This is also driven by some sort of oscillator. I used 555-based oscillator in my first prototype. Almost any stable and tunable oscillator should do. This type of driver should also be driven at the resonance frequency.

If this type of driver is driven with square you will get huge spikes at the primary of the step-up transformer. There is no protection devices drawn at the figure 15 but user should install something like a fast zener diode or a MOV parallel with D1. The spikes can be reduced also by installing a small capacitor parallel with D1. Tubes and MOSFETs can be used in the place of bipolar transistor Q1 as well.\(^\text{13}\)

\(^{13}\)In fact I have used both bipolars and MOSFETs in the described configuration in my early prototypes.
8.4 Practical examples of modern tesla coils

I used a couple of MOSFET and bipolar driven coils in my early prototypes. Due to various problems the prototypes were never converted to high-power versions. With 50VAC input my best prototype was able to produce 5cm sparks.

It was made with a single mosfet oscillator which took feedback from the coil inductively. The coil was made of 0.315 diameter wire on a 16cm diameter PVC pipe. It had approximately 1000 turns and the height was approximately 37cm. After testing that I switched to conventional spark-driven coils. I'm still testing and more info will be added later on.

Another practical example comes from [4]. It had a push-pull configuration transistors driving a 110V:4kV step-up transformer which was directly coupled to the tesla coil. The tesla coil was made of 0.3mm diameter wire and it was 10" in length and 11" in diameter. Although the coil was huge and the input was 4kV it had only some 100kV output.

9 Modern vs original methods

The original method slowly charges a capacitor and all the power is used in a very short moment. Therefore the average power will be rather low although the peak power at the moment of corona are extremely high.

The modern oscillator on the other hand uses power all the time. Usually oscillator is driven by half-wave rectified AC from mains to keep the average power consumption down. The average power consumption for same results as the spark gap driven coil is larger. A spark gap driven coil is therefore a lot better.

The average power consumption is also noted as stressing the components. High average power means high stressing of components. Therefore the original coil is better also.

The peak power of spark gap coil is huge. Just think of few low-resistance caps in parallel in the primary and a primary coil made of 1cm diameter copper pipe. The peak current will be huge. Keep in mind that magnetic field is dependent on $\frac{dI}{dt}$ where I is the primary current and t the time. The original coil will just have huge currents with its primary and therefore the magnetic field will be larger and the output will be higher.

With a spark gap driven coil you can easily drive it with say 20kV input voltage. With transistors or tubes that just would not be possible.

All in all I think the spark gap driven coil is a lot better than any modern coils (including the vacuum tube coils). It is more of mechanical construction and less the electronics.
10 Experiments with the tesla coil

10.1 Precautions

Tesla coils were used originally as radio transmitters. Therefore it is evident that they will cause lot of radio frequency interference. Tesla coils should be operated in a room with a Faraday screen. It should be avoided that Tesla coil would work on a frequency of any high importance.

There are high voltages at Tesla coils. If possible the user should have some sort of insulator around the primary winding. The sample unit shown in one of the drawings has no insulator. A plastic box could do very fine. Tesla coils should never be operated so that a user can have a nasty or even dangerous or a deadly electrical shock from the unit. The unit should be grounded for protection as well.

The unit described in [2] had no insulation on the primary and it was very dangerous to use. It was a replica of the model used by Nicola Tesla at his lectures during 1891 to 1893 in UK. The unit described in [1] has no insulation either. However I think the shield should be added on both cases for the sake of users safety. (Just think of 6kV or 10kV running on open uninsulated wires!)

User should note that high voltage electrons (high speed electrons) have some uses one might not think of. One is to slow them down (very quickly) by shooting them at suitable metals (such as iron). X-ray radiation will then occur. User should note this. Some materials like aluminum (used at fluorescent tubes, for example) will not radiate X-rays and can be used safely.

10.2 Suggested experiments

Apart from the experiments with the different output terminals described earlier there is lots of fun to do with your tesla coil. Good things to try include

- Experiment with insulators. Nothing seems to help with Tesla coils. A few millimeters of PVC just does not appear to have any effect.

- Effects with partial insulators such as wood. With wood you should notice the rea steaks and other bizarre phenomena occurring from within the wood.

- Put a paper on top of the output terminal. The corona is will just burn a small hole on the paper

They were actually very poor compared to modern resonant antenna transmitters.
Hold a neon tube at hand from one end. It should glow within a few feet distance of the tesla coil. A good example of energy fields. No wires are connected!

Hold a piece of metal tightly in your hand. Touch the corona or the output terminal with the metal object. This is an example of the skin or surface effect of high frequency electricity. Anyone with a weak heart or anyone not in a very good physical shape should try this, just in case. Also note that the unit should be tuned or a nasty shock will occur.

I'm sure you can figure out lots of other fun experiments to do with your tesla coil. I have.

11 Suggested bibliography

Mr. Paul Prescott wrote in rec.radio.amateur.misc group

The best single source for information about Nikola Tesla, Tesla coils, and similar apparatus is: Lindsay Publications, Inc., P.O. Box 12, Bradley, IL 60915-0012.

Lindsay’s offers primarily reprints of books and other information concerning technology and techniques no longer in general use.

I have personally no experience with this source.

Internet users can also contact ARRL Info server at info-servarrl.org for some info on subject.

Bob Hale told me in private mail exchange

Vacuum tube tesla coils by Corum has a fairly good theoretical treatment of Tesla coils which is not limited to vacuum tube types.

I haven't read this one either, I just have not found it (yet).

15 This is one of the newsgroups at the Internet
16 Anyone got a phone and fax number for them?
17 Anyone know the publisher and/or ISBN number or perhaps even a source for the book?
A Physical data

Some physical data is always needed by the constructors. I’ve included some important and usual ones here.

<table>
<thead>
<tr>
<th>Material</th>
<th>resistivity Ωm</th>
<th>relative permeability</th>
<th>breakdown voltage kV/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acryle</td>
<td>10^{14}</td>
<td>3.0</td>
<td>20</td>
</tr>
<tr>
<td>Baelite</td>
<td>10^{11}</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Air</td>
<td>??</td>
<td>1.0006</td>
<td>4.1</td>
</tr>
<tr>
<td>Glass</td>
<td>5×10^{11}</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Nalon</td>
<td>10^{14}</td>
<td>3.8</td>
<td>18</td>
</tr>
<tr>
<td>Paper</td>
<td>$10^{10}...10^{14}$</td>
<td>5</td>
<td>15 ... 30</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>310^{13}</td>
<td>2.3</td>
<td>18</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>10^{14}</td>
<td>2.6</td>
<td>20 ... 28</td>
</tr>
<tr>
<td>PVC</td>
<td>10^{12}</td>
<td>4.6</td>
<td>25</td>
</tr>
<tr>
<td>Teflon</td>
<td>10^{14}</td>
<td>2.0</td>
<td>35</td>
</tr>
<tr>
<td>Water, distilled</td>
<td>5×10^3</td>
<td>81</td>
<td>30</td>
</tr>
</tbody>
</table>

References

